A study on the variety of minimal rational tangents and its application

Hosung Kim

Korea Institute for Advanced Study

2012.12.20.

Contents

1 Variety of minimal rational tangents(VMRT)

- 2 Examples on VMRT
 - Projective spaces
 - Hypersurfaces
 - Complete intersection
- 3 Results (Joint work with Prof. J.-M. Hwang)
 - \blacksquare The VMRT of double covers $\phi:X\to \mathbb{P}^n$

- Characterization of double covers of \mathbb{P}^n
- Classification of finite morphisms
- Liouville-type extension problem

Let X be a Fano complex manifold (i.e., $-K_X$ is ample) with Picard number 1. Let $n := \dim X$.

Definition

A **rational curve** C on X is the image of a morphism $f : \mathbb{P}^1 \to X$ which is birational over its image. The morphism f is called a parametrization of C.

Theorem (S.Mori, 1979)

X is uniruld, that is, for any point $x \in X$, there exists a rational curve passing through x.

Let X be a Fano complex manifold (i.e., $-K_X$ is ample) with Picard number 1. Let $n := \dim X$.

Definition

A rational curve C on X is the image of a morphism $f: \mathbb{P}^1 \to X$ which is birational over its image. The morphism f is called a parametrization of C.

Theorem (S.Mori, 1979)

X is uniruld, that is, for any point $x \in X$, there exists a rational curve passing through x.

Let X be a Fano complex manifold (i.e., $-K_X$ is ample) with Picard number 1. Let $n := \dim X$.

Definition

A rational curve C on X is the image of a morphism $f : \mathbb{P}^1 \to X$ which is birational over its image. The morphism f is called a parametrization of C.

Theorem (S.Mori, 1979)

X is uniruld, that is, for any point $x \in X$, there exists a rational curve passing through x.

Let $C \subset X$ be a rational curve parametrized by $f : \mathbb{P}^1 \to X$. Set

$$f^*TX = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i).$$

Assume that $a_i \geq -1$ for all *i*.

Then the union of the locus of the curves on X which can be obtained by a deformation of C has dimension $\#\{a_i \ge 0\}$.

$$\dim \bigcup_{C \rightsquigarrow C'} C' = \#\{a_i \ge 0\}$$

Let $C \subset X$ be a rational curve parametrized by $f : \mathbb{P}^1 \to X$. Set

$$f^*TX = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i).$$

Assume that $a_i \geq -1$ for all i.

Then the union of the locus of the curves on X which can be obtained by a deformation of C has dimension $\#\{a_i \ge 0\}$.

$$\dim \bigcup_{C \rightsquigarrow C'} C' = \#\{a_i \ge 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $C \subset X$ be a rational curve parametrized by $f : \mathbb{P}^1 \to X$. Set

$$f^*TX = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i).$$

Assume that $a_i \geq -1$ for all i.

Then the union of the locus of the curves on X which can be obtained by a deformation of C has dimension $\#\{a_i \ge 0\}$.

$$\dim \bigcup_{C \rightsquigarrow C'} C' = \#\{a_i \ge 0\}$$

A free rational curve on X is a rational curve parametrized by $f:\mathbb{P}^1\to X$ with

$$f^*T_X = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i), \ a_i \ge 0.$$

Theorem

For general $x \in X$, any rational curve through x is free.

Definition

A minimal free rational curve on X is a free rational curve C with minimal anti-canonical degree $(-K_X) \cdot C$.

A free rational curve on X is a rational curve parametrized by $f:\mathbb{P}^1\to X$ with

$$f^*T_X = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i), \ a_i \ge 0.$$

Theorem

For general $x \in X$, any rational curve through x is free.

Definition

A minimal free rational curve on X is a free rational curve C with minimal anti-canonical degree $(-K_X) \cdot C$.

A free rational curve on X is a rational curve parametrized by $f:\mathbb{P}^1\to X$ with

$$f^*T_X = \bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(a_i), \ a_i \ge 0.$$

Theorem

For general $x \in X$, any rational curve through x is free.

Definition

A minimal free rational curve on X is a free rational curve C with minimal anti-canonical degree $(-K_X) \cdot C$.

Let x be a general point of X.

The variety of minimal rational curves at x is the normalization of the space of all minimal free rational curves on X through x, and we denote it by \mathcal{K}_x .

 $\mathcal{K}_x := \{ \text{minimal free rational curves through } x \}^n$

• Fix a point $0 \in \mathbb{P}^1$.

 \mathcal{K}_x is isomorphic to the union of several irreducible components of

 $\operatorname{Hom}_{bir}(\mathbb{P}^1, X, 0 \mapsto x) / \operatorname{Aut}(\mathbb{P}^1, 0).$

So every point in \mathcal{K}_x can be represented by a birational morphism $f: \mathbb{P}^1 \to X$ with f(0) = x.

• \mathcal{K}_x is a smooth projective variety of dimension p where $(-K_X) \cdot C = p + 2$ for $[C] \in \mathcal{K}$.

Fix a point $0 \in \mathbb{P}^1$.

 \mathcal{K}_x is isomorphic to the union of several irreducible components of

$$\operatorname{Hom}_{bir}(\mathbb{P}^1, X, 0 \mapsto x) / \operatorname{Aut}(\mathbb{P}^1, 0).$$

So every point in \mathcal{K}_x can be represented by a birational morphism $f: \mathbb{P}^1 \to X$ with f(0) = x.

• \mathcal{K}_x is a smooth projective variety of dimension p where $(-K_X) \cdot C = p + 2$ for $[C] \in \mathcal{K}$.

Fix a point $0 \in \mathbb{P}^1$.

 \mathcal{K}_x is isomorphic to the union of several irreducible components of

$$\operatorname{Hom}_{bir}(\mathbb{P}^1, X, 0 \mapsto x) / \operatorname{Aut}(\mathbb{P}^1, 0).$$

So every point in \mathcal{K}_x can be represented by a birational morphism $f: \mathbb{P}^1 \to X$ with f(0) = x.

• \mathcal{K}_x is a smooth projective variety of dimension p where $(-K_X) \cdot C = p + 2$ for $[C] \in \mathcal{K}$.

Define the rational map

$$\tau_x : \mathcal{K}_x \dashrightarrow \mathbb{P}(T_x X), \quad \text{by } [C] \mapsto \mathbb{P}(T_x C)$$

which is called the tangent map.

Definition

The variety of minimal rational tangents (VMRT) at x is

$$\mathcal{C}_x := \overline{\mathrm{Im}\tau_x}.$$

Define the rational map

$$\tau_x : \mathcal{K}_x \dashrightarrow \mathbb{P}(T_x X), \quad \text{by } [C] \mapsto \mathbb{P}(T_x C)$$

which is called the tangent map.

Definition

The variety of minimal rational tangents (VMRT) at x is

$$\mathcal{C}_x := \overline{\mathrm{Im}\tau_x}.$$

τ_x can be extended to a finite morphism.

In fact, any morphism $[f : \mathbb{P}^1 \to X, 0 \mapsto x] \in \mathcal{K}_x$ is an immersion at 0, and thus define $\tau([f]) := \mathbb{P}df(T_0\mathbb{P}^1)$.

Theorem (J.-M. Hwang and N.Mok, 2004)

The tangent morphism $\tau_x : _mathcalK_x \to C_x$ is birational, and thus it is the normalization morphism of C_x .

Conjecture

The tangent morphism $\tau_x : \mathcal{K}_x \to \mathcal{C}_x$ is an isomorphism.

 τ_x can be extended to a finite morphism.

In fact, any morphism $[f : \mathbb{P}^1 \to X, 0 \mapsto x] \in \mathcal{K}_x$ is an immersion at 0, and thus define $\tau([f]) := \mathbb{P}df(T_0\mathbb{P}^1)$.

Theorem (J.-M. Hwang and N.Mok, 2004)

The tangent morphism $\tau_x : _mathcal K_x \to C_x$ is birational, and thus it is the normalization morphism of C_x .

Conjecture

The tangent morphism $\tau_x : \mathcal{K}_x \to \mathcal{C}_x$ is an isomorphism.

 τ_x can be extended to a finite morphism.

In fact, any morphism $[f : \mathbb{P}^1 \to X, 0 \mapsto x] \in \mathcal{K}_x$ is an immersion at 0, and thus define $\tau([f]) := \mathbb{P}df(T_0\mathbb{P}^1)$.

Theorem (J.-M. Hwang and N.Mok, 2004)

The tangent morphism $\tau_x : _mathcalK_x \to C_x$ is birational, and thus it is the normalization morphism of C_x .

Conjecture

The tangent morphism $\tau_x : \mathcal{K}_x \to \mathcal{C}_x$ is an isomorphism.

 τ_x can be extended to a finite morphism.

In fact, any morphism $[f : \mathbb{P}^1 \to X, 0 \mapsto x] \in \mathcal{K}_x$ is an immersion at 0, and thus define $\tau([f]) := \mathbb{P}df(T_0\mathbb{P}^1)$.

Theorem (J.-M. Hwang and N.Mok, 2004)

The tangent morphism $\tau_x : _mathcalK_x \to C_x$ is birational, and thus it is the normalization morphism of C_x .

Conjecture

The tangent morphism $\tau_x : \mathcal{K}_x \to \mathcal{C}_x$ is an isomorphism.

Proposition

The tangent morphism τ_x is an immersion at $[f: \mathbb{P}^1 \to X, 0 \mapsto x] \in \mathcal{K}_x$ if and only if

$$f^*T_X = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^p \oplus \mathcal{O}_{\mathbb{P}^1}^{n-1-p}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (J.-M. Hwang, 2001)

Suppose that $X \subset \mathbb{P}^N$ and for each point $x \in X$, there exists a line through x in \mathbb{P}^N lying on X. Then for general $x \in X$, the tangent morphism $\tau_x : \mathcal{K}_x \to \mathcal{C}_x$ is an isomorphism.

The projective geometry of C_x gives a hint on the geometry of X.

Question

- What are defining equations of $C_x \subset \mathbb{P}(T_x X)$?
- How varies the projective isomorphism type of C_x ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $X = \mathbb{P}^n$.

Then minimal free rational curves are lines. For a line $\ell \subset \mathbb{P}^n$,

$$T_{\mathbb{P}^n}|_{\ell} = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus (n-1)}.$$

Since $-K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n}(n+1)$, the anti-canonical degree

$$-K_{\mathbb{P}^n} \cdot \ell = n+1$$

is minimal. Moreover,

$$\mathcal{K}_x \cong \mathcal{C}_x = \mathbb{P}T_x(\mathbb{P}^n) \cong \mathbb{P}^{n-1}.$$

$$T_{\mathbb{P}^n}|_{\ell} = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus (n-1)}.$$

Since $-K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n}(n+1)$, the anti-canonical degree

$$-K_{\mathbb{P}^n} \cdot \ell = n+1$$

is minimal. Moreover,

$$\mathcal{K}_x \cong \mathcal{C}_x = \mathbb{P}T_x(\mathbb{P}^n) \cong \mathbb{P}^{n-1}.$$

$$T_{\mathbb{P}^n}|_{\ell} = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus (n-1)}.$$

Since $-K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n}(n+1)$, the anti-canonical degree

$$-K_{\mathbb{P}^n} \cdot \ell = n+1$$

is minimal. Moreover,

$$\mathcal{K}_x \cong \mathcal{C}_x = \mathbb{P}T_x(\mathbb{P}^n) \cong \mathbb{P}^{n-1}.$$

$$T_{\mathbb{P}^n}|_{\ell} = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus (n-1)}$$

Since $-K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n}(n+1)$, the anti-canonical degree

$$-K_{\mathbb{P}^n} \cdot \ell = n+1$$

is minimal. Moreover,

$$\mathcal{K}_x \cong \mathcal{C}_x = \mathbb{P}T_x(\mathbb{P}^n) \cong \mathbb{P}^{n-1}.$$

$$T_{\mathbb{P}^n}|_{\ell} = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus (n-1)}$$

Since $-K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n}(n+1)$, the anti-canonical degree

$$-K_{\mathbb{P}^n} \cdot \ell = n+1$$

is minimal. Moreover,

$$\mathcal{K}_x \cong \mathcal{C}_x = \mathbb{P}T_x(\mathbb{P}^n) \cong \mathbb{P}^{n-1}.$$

Let $X = X_m \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree m, $2 \leq m \leq n$. The minimal free rational curves are lines on X, and

$$\mathcal{K}_x \cong \mathcal{C}_x \subset \mathbb{P}(T_x X)$$

is a smooth complete intersection of degree (2, ..., m).

Assume $x = (1 : 0 : \cdots : 0) \in X$, and let $f(t_0, \dots, t_{n+1}) = 0$ be the defining equation of X.

The line through x and $y = (0 : y_1 : \cdots : y_{n+1})$ lies on X.

$$\Leftrightarrow f(1, \lambda y_1 : \dots \lambda y_{n+1}) = b_1(y)\lambda + b_2(y)\lambda^2 + \dots + b_m(y)\lambda^m = 0$$

$$\Leftrightarrow b_1(y) = b_2(y) = \dots = b_m(y) = 0.$$

Let $X = X_m \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree m, $2 \leq m \leq n$. The minimal free rational curves are lines on X, and

$$\mathcal{K}_x \cong \mathcal{C}_x \subset \mathbb{P}(T_x X)$$

is a smooth complete intersection of degree (2, ..., m).

Assume $x = (1 : 0 : \cdots : 0) \in X$, and let $f(t_0, \dots, t_{n+1}) = 0$ be the defining equation of X.

The line through x and $y = (0 : y_1 : \cdots : y_{n+1})$ lies on X.

$$\Leftrightarrow f(1, \lambda y_1 : \dots \lambda y_{n+1}) = b_1(y)\lambda + b_2(y)\lambda^2 + \dots + b_m(y)\lambda^m = 0$$

$$\Leftrightarrow b_1(y) = b_2(y) = \dots = b_m(y) = 0.$$

Let $X = X_m \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree m, $2 \leq m \leq n$. The minimal free rational curves are lines on X, and

$$\mathcal{K}_x \cong \mathcal{C}_x \subset \mathbb{P}(T_x X)$$

is a smooth complete intersection of degree (2, ..., m).

Assume $x = (1 : 0 : \dots : 0) \in X$, and let $f(t_0, \dots, t_{n+1}) = 0$ be the defining equation of X.

The line through x and $y = (0 : y_1 : \cdots : y_{n+1})$ lies on X.

$$\Leftrightarrow f(1, \lambda y_1 : \dots \lambda y_{n+1}) = b_1(y)\lambda + b_2(y)\lambda^2 + \dots + b_m(y)\lambda^m = 0$$

$$\Leftrightarrow b_1(y) = b_2(y) = \dots = b_m(y) = 0.$$

Theorem (Lansberg and Robles, 2010)

Let $X \subset \mathbb{P}^{n+1}$ be a general smooth hypersurface of degree m, $2 \leq m \leq n$. Then the projective isomorphism type of C_x varies in a maximal way as x moves over general points of X

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $X = X_{d_1,...,d_c} \subset \mathbb{P}^N$ be a smooth complete intersection of degree $(d_1,...,d_c)$ with $d_i \geq 2$ and $\sum_{i=1}^c (d_i - 1) \leq n - 1$. The minimal free rational curves are lines on X, and

$$\mathcal{K}_x \cong \mathcal{C}_x \subset \mathbb{P}(T_x X)$$

is a smooth complete intersection of degree

$$2, 3, ..., d_1,$$

$$2, 3, ..., d_2,$$

$$\vdots$$

$$2, 3, ..., d_c.$$

Let $X = X_{d_1,...,d_c} \subset \mathbb{P}^N$ be a smooth complete intersection of degree $(d_1,...,d_c)$ with $d_i \geq 2$ and $\sum_{i=1}^c (d_i - 1) \leq n - 1$. The minimal free rational curves are lines on X, and

$$\mathcal{K}_x \cong \mathcal{C}_x \subset \mathbb{P}(T_x X)$$

is a smooth complete intersection of degree

$$2, 3, ..., d_1, 2, 3, ..., d_2, \vdots 2, 3, ..., d_c.$$

Hartshorne Conjecture on complete intersection

Let $X \subset \mathbb{P}^N$ be an irreducible nondegenerate projective manifold of dimension n, and set $c := \operatorname{Codim}(X, \mathbb{P}^N)$. If $n \ge 2c + 1$, then X is a complete intersection.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $X \subset \mathbb{P}^N$ be defined by the intersection of m hypersurfaces of degrees $d_1 \geq \cdots \geq d_m$ where m is minimal. Set $c := \operatorname{Codim}(X, \mathbb{P}^N)$ and $d := \sum_{i=1}^{c} (d_i - 1)$.

Theorem (Ionescu and Russo, 2011)

Assume $d \le n-1$. Assume moreover that $n \ge c+2$ if X is a quadratic.

Then $X \subset \mathbb{P}^N$ is a complete intersection if and only if $\mathcal{C}_x \subset \mathbb{P}(T_xX)$ is a complete intersection of codimension d. If $n \geq 2c + 1$ and X is a quadratic, then X is a complete intersection. Let $X \subset \mathbb{P}^N$ be defined by the intersection of m hypersurfaces of degrees $d_1 \geq \cdots \geq d_m$ where m is minimal. Set $c := \operatorname{Codim}(X, \mathbb{P}^N)$ and $d := \sum_{i=1}^{c} (d_i - 1)$.

Theorem (Ionescu and Russo, 2011)

Assume $d \le n-1$. Assume moreover that $n \ge c+2$ if X is a quadratic.

Then $X \subset \mathbb{P}^N$ is a complete intersection if and only if $\mathcal{C}_x \subset \mathbb{P}(T_xX)$ is a complete intersection of codimension d. If $n \geq 2c + 1$ and X is a quadratic, then X is a complete intersection. □ Results (Joint work with Prof. J.-M. Hwang) □ The VMRT of double covers $\phi : X \to \mathbb{P}^n$

Definition

Let $Y \subset \mathbb{P}^n$ be a smooth hypersurface of degree 2m, $2 \le m \le n-1$. Let $\phi: X \to \mathbb{P}^n$

be the double cover branched along Y.

Questions

- What are the minimal rational curves on *X*?
- Is τ_x an ismorphism?
- What are the defining equations of $\mathcal{C}_x \subset \mathbb{P}(T_x X)$?

• How varies C_x ?

□ Results (Joint work with Prof. J.-M. Hwang) □ The VMRT of double covers $\phi : X \to \mathbb{P}^n$

Definition

Let $Y \subset \mathbb{P}^n$ be a smooth hypersurface of degree 2m, $2 \leq m \leq n-1$. Let

$$\phi: X \to \mathbb{P}^n$$

be the double cover branched along Y.

Questions

- What are the minimal rational curves on X?
- Is τ_x an ismorphism?
- What are the defining equations of $\mathcal{C}_x \subset \mathbb{P}(T_x X)$?
- How varies C_x ?

$$K_X = \phi^*(K_{\mathbb{P}^n} + \frac{1}{2}[Y]) = \phi^*(\mathcal{O}_{\mathbb{P}^n}(m - n - 1)).$$

Therefore for any curve C in X, the anticanonical degree $(-K_X) \cdot C$ should be a multiple of n - m + 1.

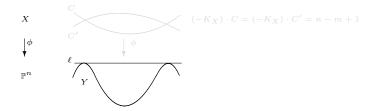
$$K_X = \phi^*(K_{\mathbb{P}^n} + \frac{1}{2}[Y]) = \phi^*(\mathcal{O}_{\mathbb{P}^n}(m - n - 1)).$$

Therefore for any curve C in X, the anticanonical degree $(-K_X) \cdot C$ should be a multiple of n - m + 1.

ヘロト ヘ回ト ヘヨト ヘヨト

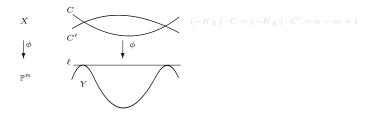
$$K_X = \phi^*(K_{\mathbb{P}^n} + \frac{1}{2}[Y]) = \phi^*(\mathcal{O}_{\mathbb{P}^n}(m - n - 1)).$$

Therefore for any curve C in X, the anticanonical degree $(-K_X) \cdot C$ should be a multiple of n - m + 1.



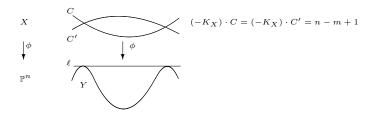
$$K_X = \phi^*(K_{\mathbb{P}^n} + \frac{1}{2}[Y]) = \phi^*(\mathcal{O}_{\mathbb{P}^n}(m - n - 1)).$$

Therefore for any curve C in X, the anticanonical degree $(-K_X) \cdot C$ should be a multiple of n - m + 1.



$$K_X = \phi^*(K_{\mathbb{P}^n} + \frac{1}{2}[Y]) = \phi^*(\mathcal{O}_{\mathbb{P}^n}(m - n - 1)).$$

Therefore for any curve C in X, the anticanonical degree $(-K_X) \cdot C$ should be a multiple of n - m + 1.



□ Results (Joint work with Prof. J.-M. Hwang) □ The VMRT of double covers $\phi : X \to \mathbb{P}^n$

For
$$y \in \mathbb{P}^n - Y$$
, set

$$\mathcal{E}_y^Y := \{ \text{lines } \ell \text{ through } y \text{ such that} \\ \text{mult}_z(\ell \cap Y) \text{ is even } \forall z \in \ell \cap Y \}.$$

The double covering morphism $\phi:X\to \mathbb{P}^n$ gives an isomorphism

$$d\phi_x: \mathbb{P}(T_xX) \to \mathbb{P}(T_{\phi(x)}\mathbb{P}^n)$$

whose restriction gives an isomorphism

$$\mathcal{C}_x \cong \mathcal{E}_{\phi(x)}^Y.$$

Example

Let $Y \subset \mathbb{P}^n$ be a smooth hypersurface defined by

$$f(t_0, \dots, t_n) := t_0^{2m} + t_0^{m-1}b_{m+1} + \dots + t_0b_{2m-1} + b_{2m} = 0.$$

Here $b_i = b_i(t_1, ..., t_n)$ is a homogeneous polynomial of deg *i*. The line passing through $y := (1 : 0 : \cdots : 0) \in \mathbb{P}^n$ and $z := (0 : z_1 : \cdots : z_n)$ belongs to \mathcal{E}_y^Y

$$\Leftrightarrow f(1, \lambda z_1, ..., \lambda z_n) = 1 + b_{m+1}(z)\lambda^{m+1} + \dots + b_{2m}(z)\lambda^{2m}$$

is the square of a polynomial of degree m
$$\Leftrightarrow b_{m+1}(z) = \dots = b_{2m}(z) = 0$$

Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. For general $x \in X$, the tangent morphism $\tau_x: \mathcal{K}_x \to \mathcal{C}_x$ is an isomorphism and

$$\mathcal{C}_x \subset \mathbb{P}(T_x X) = \mathbb{P}^{n-1}$$

is a smooth complete intersection of degree (m + 1, ..., 2m).

Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. Let $n \ge 4$ and $Y \subset \mathbb{P}^n$ be general. Then the family

 $\{\mathcal{C}_x \subset \mathbb{P}T_x(X) \mid \text{general } x \in X\}$

has maximal variation.

More precisely, for general $x \in X$, choose a trivialization $\mathbb{P}T(U) \cong \mathbb{P}^{n-1} \times U$ in a neighborhood U of $x \in X$. Define a morphism $\zeta : U \to \operatorname{Hilb}(\mathbb{P}^{n-1})$ by $\zeta(y) := [\mathcal{C}_y]$. Then $\operatorname{rk}(\mathrm{d}\zeta_x) = \mathrm{n}$ and the intersection of the image of ζ and $GL(n, \mathbb{C})$ -orbit of $\zeta(x)$ is isolated at $\zeta(x)$.

Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n - 1$. Let $n \ge 4$ and $Y \subset \mathbb{P}^n$ be general. Then the family

 $\{\mathcal{C}_x \subset \mathbb{P}T_x(X) \mid \text{general } x \in X\}$

has maximal variation.

More precisely, for general $x \in X$, choose a trivialization $\mathbb{P}T(U) \cong \mathbb{P}^{n-1} \times U$ in a neighborhood U of $x \in X$. Define a morphism $\zeta : U \to \operatorname{Hilb}(\mathbb{P}^{n-1})$ by $\zeta(y) := [\mathcal{C}_y]$. Then $\operatorname{rk}(\mathrm{d}\zeta_x) = \mathrm{n}$ and the intersection of the image of ζ and $GL(n, \mathbb{C})$ -orbit of $\zeta(x)$ is isolated at $\zeta(x)$.

Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree $2m, 2 \le m \le n-1$. Let $n \ge 4$ and $Y \subset \mathbb{P}^n$ be general. Then the family

 $\{\mathcal{C}_x \subset \mathbb{P}T_x(X) \mid \text{general } x \in X\}$

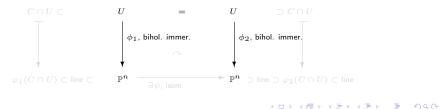
has maximal variation.

More precisely, for general $x \in X$, choose a trivialization $\mathbb{P}T(U) \cong \mathbb{P}^{n-1} \times U$ in a neighborhood U of $x \in X$. Define a morphism $\zeta : U \to \operatorname{Hilb}(\mathbb{P}^{n-1})$ by $\zeta(y) := [\mathcal{C}_y]$. Then $\operatorname{rk}(\mathrm{d}\zeta_x) = \mathrm{n}$ and the intersection of the image of ζ and $GL(n, \mathbb{C})$ -orbit of $\zeta(x)$ is isolated at $\zeta(x)$.

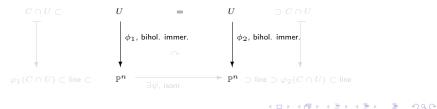
Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.

Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.

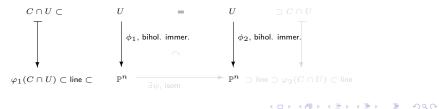
Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.



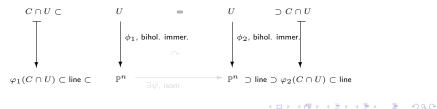
Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.



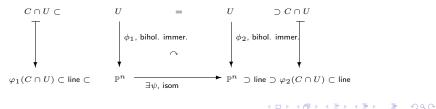
Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.



Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.



Let X be a Fano manifold such that for general $x \in X$, C_x is not contained in any quadric hypersurface in $\mathbb{P}T_x(X)$. Let $U \subset X$ be a connected neighborhood(in classical topology) of a general point $x \in X$ and $\phi_1, \phi_2 : U \to \mathbb{P}^n$ be two biholomorphic immersions such that for any $y \in U$ and any member C of \mathcal{K}_y , both $\phi_1(C \cap U)$ and $\phi_2(C \cap U)$ are contained in lines in \mathbb{P}^n . Then there exists a projective transformation $\psi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi_2 = \psi \circ \phi_1$.



Our double cover $\phi: X \to \mathbb{P}^n$ is the first known example of a Fano manifold with Picard number 1 whose VMRT at general point is not contained in any hyperquadric.

We note that

for any $[C] \in \mathcal{K}_x$, $\phi(C)$ is a line.

Next theorem shows that this property characterizes ϕ in the strong sense.

Our double cover $\phi: X \to \mathbb{P}^n$ is the first known example of a Fano manifold with Picard number 1 whose VMRT at general point is not contained in any hyperquadric. We note that

for any
$$[C] \in \mathcal{K}_x$$
, $\phi(C)$ is a line.

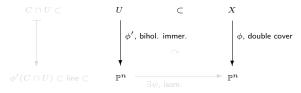
Next theorem shows that this property characterizes ϕ in the strong sense.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. Let $U \subset X$ be a neighborhood (in classical topology) of a general $x \in X$ and let $\phi': U \to \mathbb{P}^n$ be a biholomorphic immersion such that $\forall y \in U$ and $\forall [C] \in \mathcal{K}_y$, $\phi'(C \cap U) \subset$ a line in \mathbb{P}^n . Then there exits an isomorphism $\psi: \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi' = \psi \circ (\phi|_U)$.

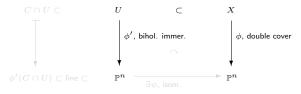
Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. Let $U \subset X$ be a neighborhood (in classical topology) of a general $x \in X$ and let $\phi': U \to \mathbb{P}^n$ be a biholomorphic immersion such that $\forall y \in U$ and $\forall [C] \in \mathcal{K}_y$, $\phi'(C \cap U) \subset$ a line in \mathbb{P}^n . Then there exits an isomorphism $\psi: \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi' = \psi \circ (\phi|_U)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



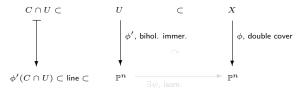
Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. Let $U \subset X$ be a neighborhood (in classical topology) of a general $x \in X$ and let $\phi': U \to \mathbb{P}^n$ be a biholomorphic immersion such that $\forall y \in U$ and $\forall [C] \in \mathcal{K}_y$, $\phi'(C \cap U) \subset$ a line in \mathbb{P}^n . Then there exits an isomorphism $\psi: \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi' = \psi \circ (\phi|_U)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



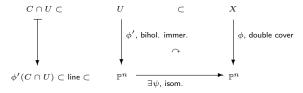
Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. Let $U \subset X$ be a neighborhood (in classical topology) of a general $x \in X$ and let $\phi': U \to \mathbb{P}^n$ be a biholomorphic immersion such that $\forall y \in U$ and $\forall [C] \in \mathcal{K}_y$, $\phi'(C \cap U) \subset$ a line in \mathbb{P}^n . Then there exits an isomorphism $\psi: \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi' = \psi \circ (\phi|_U)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



Let $\phi: X \to \mathbb{P}^n$ be the double cover branched along a smooth hypersurface Y of degree 2m, $2 \le m \le n-1$. Let $U \subset X$ be a neighborhood (in classical topology) of a general $x \in X$ and let $\phi': U \to \mathbb{P}^n$ be a biholomorphic immersion such that $\forall y \in U$ and $\forall [C] \in \mathcal{K}_y$, $\phi'(C \cap U) \subset a$ line in \mathbb{P}^n . Then there exits an isomorphism $\psi: \mathbb{P}^n \to \mathbb{P}^n$ such that $\phi' = \psi \circ (\phi|_U)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

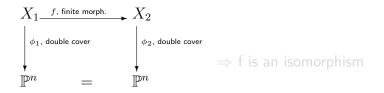


Let $Y_1, Y_2 \subset \mathbb{P}^n, n \geq 3$, be two smooth hypersurfaces of degree 2(n-1). Let $\phi_1 : X_1 \to \mathbb{P}^n$, $\phi_2 : X_2 \to \mathbb{P}^n$ be two double covers of \mathbb{P}^n branched along Y_1 and Y_2 , respectively. Suppose there exists a finite morphism $f : X_1 \to X_2$. Then fis an isomorphism.

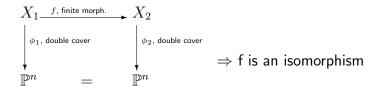
Let $Y_1, Y_2 \subset \mathbb{P}^n, n \geq 3$, be two smooth hypersurfaces of degree 2(n-1). Let $\phi_1 : X_1 \to \mathbb{P}^n$, $\phi_2 : X_2 \to \mathbb{P}^n$ be two double covers of \mathbb{P}^n branched along Y_1 and Y_2 , respectively. Suppose there exists a finite morphism $f : X_1 \to X_2$. Then fis an isomorphism.

Let $Y_1, Y_2 \subset \mathbb{P}^n, n \geq 3$, be two smooth hypersurfaces of degree 2(n-1). Let $\phi_1 : X_1 \to \mathbb{P}^n$, $\phi_2 : X_2 \to \mathbb{P}^n$ be two double covers of \mathbb{P}^n branched along Y_1 and Y_2 , respectively. Suppose there exists a finite morphism $f : X_1 \to X_2$. Then fis an isomorphism.

Let $Y_1, Y_2 \subset \mathbb{P}^n, n \geq 3$, be two smooth hypersurfaces of degree 2(n-1). Let $\phi_1 : X_1 \to \mathbb{P}^n$, $\phi_2 : X_2 \to \mathbb{P}^n$ be two double covers of \mathbb{P}^n branched along Y_1 and Y_2 , respectively. Suppose there exists a finite morphism $f : X_1 \to X_2$. Then fis an isomorphism.

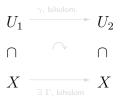


Let $Y_1, Y_2 \subset \mathbb{P}^n, n \geq 3$, be two smooth hypersurfaces of degree 2(n-1). Let $\phi_1 : X_1 \to \mathbb{P}^n$, $\phi_2 : X_2 \to \mathbb{P}^n$ be two double covers of \mathbb{P}^n branched along Y_1 and Y_2 , respectively. Suppose there exists a finite morphism $f : X_1 \to X_2$. Then fis an isomorphism.

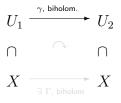


Let X be a Fano manifold of Picard number 1. Let U_1 and U_2 be two connected open subsets (in classical topology) in X. Suppose that we are given a biholomorphic map $\gamma : U_1 \to U_2$ such that for any minimal rational curve $C \subset X$, there exists another minimal rational curve C' with $\gamma(U_1 \cap C) = U_2 \cap C'$. Then does there exist $\Gamma \in \operatorname{Aut}(X)$ with $\Gamma|_{U_1} = \gamma$?

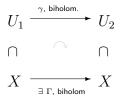
Let X be a Fano manifold of Picard number 1. Let U_1 and U_2 be two connected open subsets (in classical topology) in X. Suppose that we are given a biholomorphic map $\gamma : U_1 \to U_2$ such that for any minimal rational curve $C \subset X$, there exists another minimal rational curve C' with $\gamma(U_1 \cap C) = U_2 \cap C'$. Then does there exist $\Gamma \in \operatorname{Aut}(X)$ with $\Gamma|_{U_1} = \gamma$?



Let X be a Fano manifold of Picard number 1. Let U_1 and U_2 be two connected open subsets (in classical topology) in X. Suppose that we are given a biholomorphic map $\gamma : U_1 \to U_2$ such that for any minimal rational curve $C \subset X$, there exists another minimal rational curve C' with $\gamma(U_1 \cap C) = U_2 \cap C'$. Then does there exist $\Gamma \in \operatorname{Aut}(X)$ with $\Gamma|_{U_1} = \gamma$?

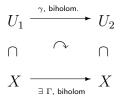


Let X be a Fano manifold of Picard number 1. Let U_1 and U_2 be two connected open subsets (in classical topology) in X. Suppose that we are given a biholomorphic map $\gamma : U_1 \to U_2$ such that for any minimal rational curve $C \subset X$, there exists another minimal rational curve C' with $\gamma(U_1 \cap C) = U_2 \cap C'$. Then does there exist $\Gamma \in \operatorname{Aut}(X)$ with $\Gamma|_{U_1} = \gamma$?



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let X be a Fano manifold of Picard number 1. Let U_1 and U_2 be two connected open subsets (in classical topology) in X. Suppose that we are given a biholomorphic map $\gamma : U_1 \to U_2$ such that for any minimal rational curve $C \subset X$, there exists another minimal rational curve C' with $\gamma(U_1 \cap C) = U_2 \cap C'$. Then does there exist $\Gamma \in \operatorname{Aut}(X)$ with $\Gamma|_{U_1} = \gamma$?



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

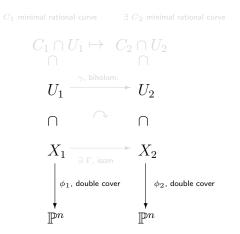
Let $Y_1, Y_2 \subset \mathbb{P}^n, n \geq 3$, be two smooth hypersurfaces of degree $2m, 2 \leq m \leq n-1$. Let $\phi_1: X_1 \to \mathbb{P}^n$, $\phi_2: X_2 \to \mathbb{P}^n$ be double covers of \mathbb{P}^n branched along Y_1 and Y_2 , respectively. Let $U_1 \subset X_1$, $U_2 \subset X_2$ be connected open subsets. Suppose that we are given a biholomorphic map $\gamma: U_1 \to U_2$ be a biholomorphic map such that for any minimal rational curve $C_1 \subset X_1$, there exists a minimal rational curve $C_2 \subset X_2$ with $\gamma(U_1 \cap C_1) = U_2 \cap C_2$. Then \exists a biregular morphism $\Gamma: X_1 \to X_2$ with $\Gamma|_{U_1} = \gamma$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Liouville-type extension problem

Thank you!

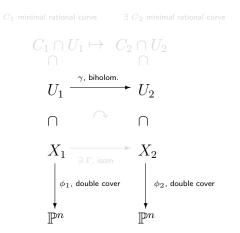
Liouville-type extension problem



Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Liouville-type extension problem



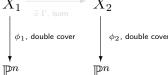
Thank you!

 $\forall C_1$ minimal rational curve $\exists C_2$ minimal rational curve $C_1 \cap U_1 \mapsto C_2 \cap U_2$ \cap γ , biholom. U_1 \bullet U_2 \cap \cap $\xrightarrow{} X_2$ ∃ Г, isom X_1 ϕ_1 , double cover ϕ_2 , double cover ¥ \mathbb{P}^n \mathbb{P}^n

Thank you!

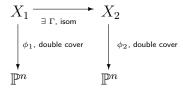
Results (Joint work with Prof. J.-M. Hwang) Liouville-type extension problem

> $\forall C_1$ minimal rational curve $\exists C_2$ minimal rational curve $C_1 \cap U_1 \mapsto C_2 \cap U_2$ \cap \cap γ , biholom. \bullet U_2 U_1 \cap \cap $\xrightarrow{} X_2$ ∃ Г, isom X_1 ϕ_1 , double cover ϕ_2 , double cover



Thank you!

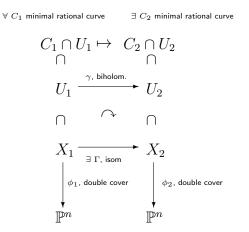
Results (Joint work with Prof. J.-M. Hwang)
Liouville-type extension problem



Thank you!

Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem



Thank you!