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Variety of minimal rational tangents(VMRT)

Let X be a Fano complex manifold(i.e., −KX is ample) with

Picard number 1. Let n := dimX.

Definition

A rational curve C on X is the image of a morphism

f : P1 → X which is birational over its image.

The morphism f is called a parametrization of C.

Theorem (S.Mori, 1979)

X is uniruld, that is, for any point x ∈ X, there exists a

rational curve passing through x.
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Variety of minimal rational tangents(VMRT)

Let C ⊂ X be a rational curve parametrized by f : P1 → X.

Set

f ∗TX = ⊕ni=1OP1(ai).

Assume that ai ≥ −1 for all i.

Then the union of the locus of the curves on X which can be

obtained by a deformation of C has dimension #{ai ≥ 0}.

dim
⋃
C C′

C ′ = #{ai ≥ 0}
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Variety of minimal rational tangents(VMRT)

Definition

A free rational curve on X is a rational curve parametrized

by f : P1 → X with

f ∗TX = ⊕ni=1OP1(ai), ai ≥ 0.

Theorem

For general x ∈ X, any rational curve through x is free.

Definition

A minimal free rational curve on X is a free rational curve

C with minimal anti-canonical degree (−KX) · C.
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Variety of minimal rational tangents(VMRT)

Definition

Let x be a general point of X.

The variety of minimal rational curves at x is the

normalization of the space of all minimal free rational curves

on X through x, and we denote it by Kx.

Kx := {minimal free rational curves through x}n



Variety of minimal rational tangents(VMRT)

Fix a point 0 ∈ P1.

Kx is isomorphic to the union of several irreducible

components of

Hombir(P1, X, 0 7→ x)/Aut(P1, 0).

So every point in Kx can be represented by a birational

morphism f : P1 → X with f(0) = x.

Kx is a smooth projective variety of dimension p where

(−KX) · C = p+ 2 for [C] ∈ K.
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Variety of minimal rational tangents(VMRT)

Define the rational map

τx : Kx 99K P(TxX), by [C] 7→ P(TxC)

which is called the tangent map.

Definition

The variety of minimal rational tangents (VMRT) at x is

Cx := Imτx.
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Variety of minimal rational tangents(VMRT)

Theorem (S. Kebekus, 2002)

τx can be extended to a finite morphism.

In fact, any morphism [f : P1 → X, 0 7→ x] ∈ Kx is an

immersion at 0, and thus define τ([f ]) := Pdf(T0P1).

Theorem (J.-M. Hwang and N.Mok, 2004)

The tangent morphism τx : mathcalKx → Cx is birational,

and thus it is the normalization morphism of Cx.

Conjecture

The tangent morphism τx : Kx → Cx is an isomorphism.
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Variety of minimal rational tangents(VMRT)

Proposition

The tangent morphism τx is an immersion at

[f : P1 → X, 0 7→ x] ∈ Kx if and only if

f ∗TX = OP1(2)⊕OP1(1)p ⊕On−1−pP1 .



Variety of minimal rational tangents(VMRT)

Theorem (J.-M. Hwang, 2001)

Suppose that X ⊂ PN and for each point x ∈ X, there exists

a line through x in PN lying on X. Then for general x ∈ X,

the tangent morphism τx : Kx → Cx is an isomorphism.



Variety of minimal rational tangents(VMRT)

The projective geometry of Cx gives a hint on the geometry of

X.

Question

What are defining equations of Cx ⊂ P(TxX)?

How varies the projective isomorphism type of Cx?



Examples on VMRT

Projective spaces

Let X = Pn.

Then minimal free rational curves are lines.

For a line ` ⊂ Pn,

TPn|` = OP1(2)⊕OP1(1)⊕(n−1).

Since −KPn = OPn(n+ 1), the anti-canonical degree

−KPn · ` = n+ 1

is minimal. Moreover,

Kx ∼= Cx = PTx(Pn) ∼= Pn−1.
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Examples on VMRT

Hypersurfaces

Let X = Xm ⊂ Pn+1 be a smooth hypersurface of degree m,

2 ≤ m ≤ n.

The minimal free rational curves are lines on X, and

Kx ∼= Cx ⊂ P(TxX)

is a smooth complete intersection of degree (2, ...,m).

Assume x = (1 : 0 : · · · : 0) ∈ X, and let f(t0, ..., tn+1) = 0 be

the defining equation of X.

The line through x and y = (0 : y1 : · · · : yn+1) lies on X.

⇔ f(1, λy1 : · · ·λyn+1) = b1(y)λ+ b2(y)λ2 + · · ·+ bm(y)λm = 0

⇔ b1(y) = b2(y) = · · · = bm(y) = 0.
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Examples on VMRT

Hypersurfaces

Theorem (Lansberg and Robles, 2010)

Let X ⊂ Pn+1 be a general smooth hypersurface of degree m,

2 ≤ m ≤ n. Then the projective isomorphism type of Cx varies

in a maximal way as x moves over general points of X



Examples on VMRT

Complete intersection

Let X = Xd1,...,dc ⊂ PN be a smooth complete intersection of

degree (d1, ..., dc) with di ≥ 2 and
∑c

i=1(di − 1) ≤ n− 1.

The minimal free rational curves are lines on X, and

Kx ∼= Cx ⊂ P(TxX)

is a smooth complete intersection of degree

2, 3, ..., d1,

2, 3, ..., d2,

...

2, 3, ..., dc.
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Examples on VMRT

Complete intersection

Hartshorne Conjecture on complete intersection

Let X ⊂ PN be an irreducible nondegenerate projective

manifold of dimension n, and set c := Codim(X,PN). If

n ≥ 2c+ 1, then X is a complete intersection.



Examples on VMRT

Complete intersection

Let X ⊂ PN be defined by the intersection of m hypersurfaces

of degrees d1 ≥ · · · ≥ dm where m is minimal.

Set c := Codim(X,PN) and d :=
∑c

i=1(di − 1).

Theorem (Ionescu and Russo, 2011)

Assume d ≤ n− 1. Assume moreover that n ≥ c+ 2 if X is a

quadratic.

Then X ⊂ PN is a complete intersection if and only if

Cx ⊂ P(TxX) is a complete intersection of codimension d.

If n ≥ 2c+ 1 and X is a quadratic, then X is a complete

intersection.
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Results (Joint work with Prof. J.-M. Hwang)

The VMRT of double covers φ : X → Pn

Definition

Let Y ⊂ Pn be a smooth hypersurface of degree 2m,

2 ≤ m ≤ n− 1. Let

φ : X → Pn

be the double cover branched along Y .

Questions

What are the minimal rational curves on X?

Is τx an ismorphism?

What are the defining equations of Cx ⊂ P(TxX)?

How varies Cx?
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Results (Joint work with Prof. J.-M. Hwang)

The VMRT of double covers φ : X → Pn

From the adjunction formula, it follows that

KX = φ∗(KPn +
1

2
[Y ]) = φ∗(OPn(m− n− 1)).

Therefore for any curve C in X, the anticanonical degree

(−KX) · C should be a multiple of n−m+ 1.

X

?
φ

Pn
Y

`

C

C′

?
φ

(−KX ) · C = (−KX ) · C′ = n−m + 1
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Results (Joint work with Prof. J.-M. Hwang)

The VMRT of double covers φ : X → Pn

For y ∈ Pn − Y , set

EYy :={lines ` through y such that

multz(` ∩ Y) is even ∀z ∈ ` ∩ Y }.

The double covering morphism φ : X → Pn gives an

isomorphism

dφx : P(TxX)→ P(Tφ(x)Pn)

whose restriction gives an isomorphism

Cx ∼= EYφ(x).



Results (Joint work with Prof. J.-M. Hwang)

The VMRT of double covers φ : X → Pn

Example

Let Y ⊂ Pn be a smooth hypersurface defined by

f(t0, ..., tn) := t2m0 + tm−10 bm+1 + · · ·+ t0b2m−1 + b2m = 0.

Here bi = bi(t1, ..., tn) is a homogeneous polynomial of deg i.

The line passing through y := (1 : 0 : · · · : 0) ∈ Pn and

z := (0 : z1 : · · · : zn) belongs to EYy

⇔f(1, λz1, ..., λzn) = 1 + bm+1(z)λm+1 + · · ·+ b2m(z)λ2m

is the square of a polynomial of degree m

⇔bm+1(z) = · · · = b2m(z) = 0



Results (Joint work with Prof. J.-M. Hwang)

The VMRT of double covers φ : X → Pn

Theorem

Let φ : X → Pn be the double cover branched along a smooth

hypersurface Y of degree 2m, 2 ≤ m ≤ n− 1.

For general x ∈ X, the tangent morphism τx : Kx → Cx is an

isomorphism and

Cx ⊂ P(TxX) = Pn−1

is a smooth complete intersection of degree (m+ 1, ..., 2m).



Results (Joint work with Prof. J.-M. Hwang)

The VMRT of double covers φ : X → Pn

Theorem

Let φ : X → Pn be the double cover branched along a smooth

hypersurface Y of degree 2m, 2 ≤ m ≤ n− 1.

Let n ≥ 4 and Y ⊂ Pn be general. Then the family

{Cx ⊂ PTx(X) | general x ∈ X}

has maximal variation.

More precisely, for general x ∈ X, choose a trivialization

PT (U) ∼= Pn−1 × U in a neighborhood U of x ∈ X. Define a

morphism ζ : U → Hilb(Pn−1) by ζ(y) := [Cy]. Then

rk(dζx) = n and the intersection of the image of ζ and

GL(n,C)-orbit of ζ(x) is isolated at ζ(x).
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Characterization of double covers of Pn

Theorem

Let X be a Fano manifold such that for general x ∈ X, Cx is not
contained in any quadric hypersurface in PTx(X).
Let U ⊂ X be a connected neighborhood(in classical topology) of
a general point x ∈ X and φ1, φ2 : U → Pn be two biholomorphic
immersions such that for any y ∈ U and any member C of Ky,
both φ1(C ∩ U) and φ2(C ∩ U) are contained in lines in Pn.
Then there exists a projective transformation ψ : Pn → Pn such
that φ2 = ψ ◦ φ1.

U

Pn
?

φ1, bihol. immer.

U

Pn
?

φ2, bihol. immer.

=

∀ y ∈ U and ∀[C] ∈ Ky ,

C ∩ U ⊂

ϕ1(C ∩ U) ⊂ line ⊂

?

⊃ C ∩ U

⊃ line ⊃ ϕ2(C ∩ U) ⊂ line

?
-

∃ψ, isom

y
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Characterization of double covers of Pn

Our double cover φ : X → Pn is the first known example of a

Fano manifold with Picard number 1 whose VMRT at general

point is not contained in any hyperquadric.

We note that

for any [C] ∈ Kx, φ(C) is a line.

Next theorem shows that this property characterizes φ in the

strong sense.
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Let φ : X → Pn be the double cover branched along a smooth
hypersurface Y of degree 2m, 2 ≤ m ≤ n− 1.
Let U ⊂ X be a neighborhood (in classical topology) of a general
x ∈ X and let φ′ : U → Pn be a biholomorphic immersion such
that ∀ y ∈ U and ∀[C] ∈ Ky, φ′(C ∩ U) ⊂ a line in Pn.
Then there exits an isomorphism ψ : Pn → Pn such that
φ′ = ψ ◦ (φ|U ).

X
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Classification of finite morphisms

Theorem

Let Y1, Y2 ⊂ Pn, n ≥ 3, be two smooth hypersurfaces of

degree 2(n− 1). Let φ1 : X1 → Pn, φ2 : X2 → Pn be two

double covers of Pn branched along Y1 and Y2, respectively.

Suppose there exists a finite morphism f : X1 → X2. Then f

is an isomorphism.

X1

Pn
?

φ1, double cover

X2

Pn
?

φ2, double cover

=

-f , finite morph.

⇒ f is an isomorphism
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Liouville-type extension problem

Problem (Liouville-type extension problem)

Let X be a Fano manifold of Picard number 1. Let U1 and U2

be two connected open subsets (in classical topology) in X.

Suppose that we are given a biholomorphic map γ : U1 → U2

such that for any minimal rational curve C ⊂ X, there exists

another minimal rational curve C ′ with γ(U1 ∩ C) = U2 ∩ C ′.
Then does there exist Γ ∈ Aut(X) with Γ|U1 = γ?

X X

∩ ∩

U1 U2
-

γ, biholom.

∃ Γ, biholom

-

y
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Liouville-type extension problem

Theorem

Let Y1, Y2 ⊂ Pn, n ≥ 3, be two smooth hypersurfaces of

degree 2m, 2 ≤ m ≤ n− 1. Let φ1 : X1 → Pn, φ2 : X2 → Pn

be double covers of Pn branched along Y1 and Y2, respectively.

Let U1 ⊂ X1, U2 ⊂ X2 be connected open subsets. Suppose

that we are given a biholomorphic map γ : U1 → U2 be a

biholomorphic map such that for any minimal rational curve

C1 ⊂ X1, there exists a minimal rational curve C2 ⊂ X2 with

γ(U1 ∩ C1) = U2 ∩ C2. Then ∃ a biregular morphism

Γ : X1 → X2 with Γ|U1 = γ.
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Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!



Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!



Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!



Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!



Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!



Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!



Results (Joint work with Prof. J.-M. Hwang)

Liouville-type extension problem

X1

?
Pn

φ1, double cover

X2

?
Pn

φ2, double cover

∩ ∩

U1 U2
-

γ, biholom.

∩
C1 ∩ U1

∀ C1 minimal rational curve

∩
C2 ∩ U2

∃ C2 minimal rational curve

7→

∃ Γ, isom

-

y

Thank you!


	Variety of minimal rational tangents(VMRT)
	Examples on VMRT
	Projective spaces
	Hypersurfaces
	Complete intersection

	Results (Joint work with Prof. J.-M. Hwang)
	The VMRT of double covers :XPn
	Characterization of double covers of Pn
	Classification of finite morphisms
	Liouville-type extension problem


